Design and integration of 1D and 2D diffractive beam splitters (multi-spot) into optical systems in sequential and non-sequential mode of ZEMAX™

TUTORIAL HOLO/OR

Contents

1.	Introduction	2
	 1.1. Preliminary reading	2
2.	Three techniques to model diffractive beam splitters – two in sequential mode and one in non-sequential mode	
	 2.1. Sequential mode - Method A: Diffraction grating surface and multi-configuration	4 5 6
3.	Methods comparison and summary	9
4.	Example files links and existing products from Holo/Or: 4.1. Files	10

1. Introduction

1.1. Preliminary reading

- 1.1.1. HOLO/OR's application note for Diffractive Beam Splitters
 - http://holoor.co.il/Diffractive optics Applications/Application Notes BeamSplitters.htm
- 1.1.2. Articles about definition of diffractive functionality in ZEMAX
 - How diffractive surfaces are modeled in OpticStudio
 - How to model diffractive optics using the Binary 2 surface
- 1.1.3. ZEMAX user manual Diffractive Grating surface
- 1.2. Definition of Diffraction Grating Surface in ZEMAX™
 - 1.2.1. Diffraction grating surfaces have two key parameters:
 - Lines/μm (equivalent to grating period)
 - Diffraction order
- 1.3. Calculation of Lines/μm
 - 1.3.1. According to the Grating Equation:

$$\Lambda = \frac{m\lambda}{\sin\alpha}$$

Where:

- Λ: grating period
- m: order number (from Zero Order)
- α : separation angle (for example for m=1 means separation angle between Zero Order and Order +/- 1)
- λ: wavelength

$$Lines / \mu m = \frac{1}{\Lambda[\mu m]}$$

- 1.3.2. Example:
 - $\lambda = 532 \text{ nm}$

- α = 0.10 (More information about separation angle for even and odd orders can be found here)
- Calculated Λ = 304.814 μ m
- Lines/um = $1/\Lambda = 1/304.814 = 0.0033$ [Lines/ μ m]
- 1.3.3. Holo/Or's online grating calculator can be used:
 - https://www.holoor.co.il/optical-calculator/gratings-optical-calculator/ (section "Gratings")
- 2. Three techniques to model diffractive beam splitters two in sequential mode and one in non-sequential mode:
 - 2.1. Sequential mode Method A: Diffraction grating surface and multi-configuration
 - 2.1.1. Development steps
 - Inserting general parameters for simulation (wavelength, aperture, etc.)
 - Inserting Diffraction Grating surface into Lens editor
 - \circ Lines/ μ m (equivalent to grating period)
 - o Diffraction order
 - Definition of Multi-Configuration Editor
 - 2.1.2. Example for 1D case of 5 spots splitter diffraction orders 2 to 2:

Lens data editor view:

- 2.1.3. Advantages of the method
 - Realistic physical model (consistent with Diffraction Grating equation)
 - Allows optimization of the optical system including diffractive beam splitter

Page | 3

Copyright © 2021 Holo/Or LTD.

Tel +972-8-940-9687 Fax +972-8-940-9606 www.holoor.com holoor@holoor.co.il

Allows 2D beam splitter modeling

2.2. **Sequential mode - Method B:** Field's angle

2.2.1. Development steps

- Entering Fields' angle in "System Explorer" (The field angles are equivalent to propagation angle of the Multi-Spot orders)
- 2.2.2. Example for defining a 5-spot beam splitter with separation angle of 0.1 degrees:

Lens data editor view:

• Object surface contains two functionalities – a source and a multi-spot. Distance from multi-spot and the following optical surfaces can be defined by adding distance between surface 0 and surface 1.

2.2.3. Advantages of the method

- Simplest way to build and analyze results
- Allows optimization of the optical system including diffractive beam splitter
- Allows 2D beam splitter modeling

2.3. **Sequential mode** – displaying and analyzing results

3D Viewer

2.3.1. 3D Layout diagram:

2.3.2. Spot diagram

Method A - Window's setting definition in 3 steps:

Page | 5

Copyright © 2021 Holo/Or LTD.

Method B - Window's setting definition

2.4. Non-sequential mode – Method C: Diffraction Grating surface with special definitions

2.4.1. Development steps

- The design starts with the calculation of lines / μ m value.
- Open a new file in NSC mode
- Insert Source surface Define general properties of the design (wavelength ...)
- Number of "#Analysis Rays" and "# Layout Rays"

Page | 6

Copyright © 2021 Holo/Or LTD.

This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

Tel +972-8-940-9687 Fax +972-8-940-9606 www.holoor.com holoor@holoor.co.il

- Insert Diffraction Grating surface
 - Define basic parameters for the element (material, thickness, clear aperture)
 - Insert Lines / μm parameter
 - Open properties of Diffraction grating surface and go to Diffraction property
 - o In "Split" option choose "Split by DLL function" and then choose file diff samp 1.DLL
 - Enter Start Order and Stop Order. For example, for 5 spots beam splitter -2 and 2
 - \circ Insert period size in lines/ μ m units into reflection and transmission sections.

- * For a 2D beam splitter another Diffraction Grating surface needs to be entered with a 90 degrees rotation around the optical axis (typically "tilt Z").
- ** For large number of orders, some modification in general properties of the non-sequential mode might be required to get correct results. Increase Maximum Segments per Ray value while you will get efficient number for the specific case.

2.4.2. Advantages of the method

- More realistic physical model (chromatic behavior)
- Allows the modeling of all orders at once for a 2D beam splitter
- Enables integration of a diffractive element into any optical system
- Very useful for illumination systems

2.5. Non-sequential mode - displaying and analyzing results

2.5.1. NSC 3D Layout and NSC Shaded Model:

• To see the diffraction orders, mark the option for "Split NSC Rays" in properties of 3D Layout and also for Ray Trace Control

Example - results for beam splitter array 5x5

2.5.2. Ray Tracing Results

3. Methods comparison and summary

3.1. Comparison table for sequential and non-sequential models

	Method A	Method B	Method C
Ideal model	Yes	Yes	Yes
Geometrical method	Yes	Yes	Yes
Optimization of multi element optical system	Natural	Requires adaptation per wavelength	Complex
Aberration analysis	Natural	Natural	Complex
Simultaneous analysis of all spots	No	No	Yes

3.2. Summary

- 3.2.1. Three methods to model Diffractive Beam Splitter in ZEMAX were shown
- 3.2.2. The methods are based on geometrical concept and assume an ideal element
- 3.2.3. The Sequential mode based methods benefit optimization and design capability by using multi configuration or field angles
- 3.2.4. The Non-Sequential mode method brings more realistic result by allowing to propagate all spots at once
- 3.2.5. The methods allow integration and analysis of Diffractive Beam Splitter within different optical systems design

4. Example files links and existing products from Holo/Or:

4.1. Files

- <u>ExampleBeamSplitterMultiConfig</u>
- ExampleBeamSplitterFieldsAngle
- MS-NS

4.2. Available products

http://holoor.co.il/Diffractive Optics Products/Diffractive Beam Splitters/BeamSplittermultispot.htm