

Introduction to technique of design and integration of Multifocal Lens into optical system in Sequential and Non-Sequential modes of ZEMAX

Written by HOLO/OR Ltd.

January 2016

Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617

Content

- 1. Introduction Preliminary reading
- 2. Design of multifocal lens on example of specific product MF-001
 - 2.1. MF-001 specifications table
 - 2.2. Modeling of Multifocal Lens in Sequential mode 2.2.1. Developing steps
 - 2.3. Modeling of multifocal lens in non-sequential (NSC) mode 2.3.1. Development steps
- 3. Analysis of the model in NSC mode
- 4. Comparison table for Sequential and Non-Sequential models
- 5. Summary
- 6. Files example for downloading

Tel +972-8-940-9687 Fax +972-8-940-9606 www.holoor.com holoor@holoor.co.il

1. Preliminary reading

- 1. HOLO/OR's application note for Multifocal Lens: <u>https://www.holoor.co.il/application/diffractive-multifocal-bifocal-trifocal-application-notes/</u>
- 2. Binary 2 surface article <u>http://www.zemax.com/support/resource-center/knowledgebase/how-to-design-diffractive-optics-using-the-binary</u>
- 3. ZEMAX manual for binary 2 surface

Tel +972-8-940-9687 Fax +972-8-940-9606

www.holoor.com holoor@holoor.co.il

2. Design of multifocal lens on example of specific product MF-001-I-Y-A

2.1. Specifications table:

Operating wavelength:	1064nm
Element Type:	Window
Element Diameter (D):	15mm
Material:	Fused Silica
Element Thickness (CT):	3 mm
Element Clear Aperture:	13.2 mm
Coating:	AR/AR coating
Recommended Input Beam***:	> 7.8mm
Beam Input mode:	SM / MM
Number of Foci:	5
External lens used (not supplied):	20mm
Total distance in air medium**:	451.3 um
Refractive index of selected medium:	1.00
Total distance in selected medium**:	451.3 um
Estimated transmission efficiency:	Close to 100%
Overall efficiency:	~ 75%

Foci number	1	2	3	4	5
Foci location in air medium [mm]	19.78	19.89	20	20.11	20.23

Foci number	1→2	2→3	3→4	4→5
Separation between foci in air medium [um]	110.9	112.2	113.4	114.7

Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il

2.2. Modeling of Multifocal Lens in Sequential mode 2.2.1. Developing steps

- 1. Insert general parameters of the simulation aperture size, and wavelength
- 2. Insert binary 2 surface parameters:
 - a. Define Normalization Radius
 - b. Define max. Number of polynomials (typically < 5 is enough)
 - c. Sign polynomials as variables

	Surf:Type Cor	Radius	Thickness	Mat	Coa	Semi-Diamet	Cor	TCE	Diffract Order	2nd	4th	6th	8th	10t	12t	14t	16t	Maximum Term #	Norm Radius	Coeff. on p^2	2 Coeff. on p^4
0	Standard 🕶	Infinity	Infinity			0.000	0.0.	0.0.													
1	Binary 2 🔻	Infinity	0.000			6.600	0.0.	0.0.	1.000	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	2	15.000	-187.399 V	8.456E-004 V

3. Insert paraxial lens

a. Choose desired EFL (from spec)

Calculate the location of the first order (+1) using our multifocal calculator in the website.

Insert this location as the "Thickness" parameter of the paraxial lens.

	Surf:Type	Cor	Radius	Thickness	Mat	Coa	Semi-Diame	ete	Cor	TCE	Par 0(unused)	Focal Lengt	th	OPD Mod	le
0	Standard 🔻		Infinity	Infinity			0.000		0.0.	0.0.					
1	Binary 2 🔻		Infinity	0.000			6.600		0.0.	0.0.	1.000	0.000		0.000	
2	Paraxial 🔻			19.888			6.600			0.0.		20.000		1	

4. Optimization of spot size with default merit function.

*Remove variables from Binary 2 surface after optimization.

🔓 Merit Function Editor								
🗢 🗔 📦 🔖 🛪 🤽	• 🗲 😫 •	÷ 🔿 🔞						
 Wizards and Operands 	• •			Merit Fu	nction: 1.83958685543	3341E-10		
Optimization Wizard Current Operand (5)	Optimization Type: Criteria: Reference: Pupil Integrat © Gaussian C © Rectangula Rings: Arms: Obscuration:	Function RMS Spot Radius Centroid Centroid Cuadrature ar Array 20 12 0	Boundary '	Values Min: Max: Edge Thickness: Min: Max: Edge Thickness:	0 1e+03 0 0 1e+03 0	Assume Axial Symm Ignore Lateral Colo Add Favorite Opera Configuration: Start At: Relative X Weight: Overall Weight:	netry: r: All 1	V 1 \$
	ОК	Apply Close			Save Settings	Load Settings	Reset Settings	?

5. Definition of Multi Configuration mode:

B	🗈 Multi-Configuration Editor 🔹 – 🗆 🗙										
Update: All Windows 🔹 🔖 🖓 🗡 📿 🎩 🕷 💷 😴 🛸 🛶 🔞											
✓ Operand 2 Properties < > Configuration 2/5 < >											
~	operand 21	TOPC	i des 🕔	•		connigui	aut		~	/	
	Active : 2	2/5	Config	1 Config	, 2'	Config	ı 3	Config	4	Config	5
1	Active : 2 PRAM •	2/5 1/0	Config 2.000	1 Config 1.000	, 2'	Config 0.000	ı 3	Config -1.000	4	Config -2.000	5

Diffrac	tion order p	arameter		Foci posit	tion for each di	iffraction order		
perand 1 Properties 🔇 📎			perand 2 Properties 🔇 🕥					
erand 1	Operand:		PRAM -	perand 2	Operand	THIC -		
	Surface:	1	•		operand.	Thic •		
	Parameter:	0			Surface:	2 •		
	Row Color:	Default Color	•		Row Color:	Default Color 🔹		

6. Now when the multifocal is ready, you can delete it and replace it with your real optical setup. To visualize the result, use the "split rays" and show all configurations in 3D layout, as in the image below

Properties window for	r 3D Layout	3D Layout with 5 foci demonstration
3: 3D Layout 3		© 🕫 🔤 🖶 🖊 🗖 🖍 — A H ♠ • 📐 🔤 👰 ۹. 🔯 🔒 🔛 🐨 O Une Thickness • 🔒
🔿 💈 🗈 🗟 🖶 🖊 🗖 🖊 🗕 A H	🔺 - 🖊 🛯 🐼 ۹ 🖾 🔒 🖪	E Z = 89.515241, V = 0.067215559
Line Thickness • 🔞		
First Surface: 1	Wavelength: 1	
Last Surface: 3	Field: All	
Number Of Rays: 7 🗘	Ray Pattern: XY Fan	
Scale Bar: On 🔹	Color Rays By: Field #	
Rotation	, ,	
X: -2.89055E-05 Y: 0	Z: 0	
Delete Vienetted.	С Г (П	
	Suppress Frame:	
Hide Lens Faces:	Fletch Rays:	
Hide Lens Edges:	Split NSC Rays: 📝	
Hide X Bars:	Scatter NSC Rays:	
All		
Configuration 1/5		k.
2/5		▶ 0.5 mm
3/5		3D Layout
X: 0 Y: 0	7: 0	17/03/2016 Zemax
		Zemax OpticStudio 1
Auto Apply Apply OK Canc	el Save Load R	es

 Tel +972-8-940-9687
 www.holoor.com

 Fax +972-8-940-9606
 holoor@holoor.co.il

2.3. Modeling of multifocal lens in non-sequential (NSC) mode

*The design starts with ready solution prepared in sequential mode.

2.3.1. Development steps

1. Open new file in NSC mode

2. Insert Source surface

Define general properties of the design (wavelength ...)

Number of "#Analysis Rays" should be efficient for the simulation ~ 10 000 000 3. Insert Binary 2 surface

a) Define basic parameters for the element (material, thickness, clear aperture)b) Copy and paste number of polynomial, normal radius, and polynomials from sequential mode Binary2surface to Binary2 surface in NSC mode

c) Open properties window and go to Diffraction definition

In "Split" parameter choose option "Split by table below". For multifocal lens with 5 foci activated orders are from -2 to 2 with step 1. Insert "Start Order" value -2 and "Stop Order" value 2. In transmit section enter fraction of energy to specific Diffractive Order. Sum of all orders should be equal to 1. More information can be found in ZEMAX User Manual.

Non-Sequential	Component Editor			
Update: All Windo	ws • 🕐 🕙 🖊 🛸	(🕸 🐚 🎞 🕶 (🕒 🗠 🗛 🗠 🔿	्र 🔲 😫 🕶 (
Object 2 Propert	ies 🔇 🔊			
Type Draw	Split:	Split by table belo	w	•
Sources	DLL:	diff_samp_1.DLL		~
Coat/Scatter	Start Order:	-2	Stop Order:	2
Scatter To				
Volume Physics		Reflect:		Transmit:
Index	Order -2:	0	Order -2:	0.2
Diffraction		-		
CAD	Order -1:	0	Order -1:	0.2
	Order 0:	0	Order 0:	0.2
	Order 1:	0	Order 1:	0.2
	Order 2:	0	Order 2:	0.2

For even number of foci activated orders will be: -n+1 to n-1 with step 2. For example multifocal lens with 4 foci n = 4, "Start Order" is -3, and "Stop Order" is 3.

 Tel +972-8-940-9687
 www.holoor.com

 Fax +972-8-940-9606
 holoor@holoor.co.il

📓 Non-Sequential	Component Editor				
Update: All Windo	ws • 🛈 🔇 🔼 🕯	🕽 🕸 🐚 🎞 🕶	🔵 cad + 🛛 Z + 🚫	ç 🗉 🕏 🕶	->
Object 2 Propert	ies 🔇 🔊				
Type Draw	Split:	Split by table belo	W	•)
Sources	DLL:	diff_samp_1.DLL		$\overline{\mathbf{v}}$]
Coat/Scatter Scatter To	Start Order:	-3	Stop Order:	3]
Volume Physics		Reflect:		Transmit:	
Index	Order -3:	0	Order -3:	0.25	*
Diffraction	Order -2:	0	Order -2:	0	
CAD	Order -1:	0	Order -1:	0.25	
	Order 0:	0	Order 0:	0	=
	Order 1:	0	Order 1:	0.25	
	Order 2:	0	Order 2:	0	
	Order 3:	0	Order 3:	0.25	*

4. Insert Paraxial Lens (for basic design) with parameters of EFL. We placed absorbing aperture before paraxial lens to define limited aperture.

5. Insert Detector surface with its parameters. For convenience we suggest to place several detectors.

3. Analysis of the model in NSC mode

In order to see diffraction orders check on "Split NSC Rays" in properties of 3D Layout and also for Ray Trace

 1: NSC 3D Layout 2 a a a Line Thickness • Surface: Ray Database: Filter: Ray Trace: 	Kon Ray Databases Found>	•	Ray Trace Control Clear Detectors Clear & Trace Auto Update Ulso Poloziazion	All Trace # of Cores: 8
Color Rays By: Rotation	Source # Scale Bar:	On 🔹	Split NSC Rays	Scatter NSC Rays
X: 0 Use Polarization Fletch Rays Suppress Frame	Y: 0 Split NSC Rays Scatter NSC Ray Pply OK Cancel	Z: 0 vs Save Load Reset	•	
	3D Layout and	Shaded Model	Ray	Trace and Detector Viewer

In Non-Sequential mode, it's possible to simulate all foci at once.

4. Comparison table for Sequential and Non-Sequential models

	Sequential	Non
		Sequential
Ideal model	Yes	Yes
Geometrical method	Yes	Yes
Optimization of multi elements optical system	Natural	Complex
Simultaneous analysis of all foci in single plane	No	Yes

5. Summary:

1. We showed method to model Multifocal Lens in ZEMAX

2. The Sequential method benefits optimization and design capability by using multi configuration

3. The Non Sequential method brings more realistic result by allowing seeing all foci at once

4. Combination of the two methods allows both design and analysis of systems with multifocal lens in ZEMAX.

6. Examples file for downloading:

MF-001 MF-001_NSC

> Tel +972-8-940-9687 ww Fax +972-8-940-9606 ho

www.holoor.com holoor@holoor.co.il