Multi Focal Lens

Multi-focal Diffractive Optical Elements (DOE’s) allow a single incident beam to focus simultaneously at several focal lengths along the propagation axis.

From a collimated input beam (single mode or multi-mode), the output beams focus at a fixed number of focal lengths, predetermined during the design of the DOE based on the customer’s system requirements.

FEATURES
- Arbitrary number of foci
- Control in the distance between foci
- High power threshold

APPLICATIONS
- Ophthalmic application
- Optical sensors
- Parallel zoom systems
- Material processing (Laser cutting)

Multi-focal DOE come in two configurations:

1. A DOE consisting of a Plano convex lens with predetermined focal length, and a diffractive pattern, etched on its Plano side.

2. For more flexibility, a window DOE, thus, to get the foci spots at certain distances, the user adds a regular focusing lens after the DOE. The lens focal length determines the working distance (WD).

Tel +972-8-940-9687 www.holoor.com
Fax +972-8-940-9606 holoor@holoor.co.il
Einstein 13B, Science Park Ness Tziona 7403617
THEORY & DESIGN CONSIDERATIONS

The multi-focal spots location is a function of the refractive focal length, $f_{\text{Refractive}}$, and predetermined diffractive focal length, $f_{\text{Diffractive}}$. The foci spot at the “zero” order refers to the refractive FL of the used lens. The other diffractive foci spots, orders $\pm1, \pm2, \pm3\ldots$, appear symmetrically around the refractive “zero” order. The distances between the foci spots are described by the equation below:

$$\frac{1}{f_{m\text{Diffractive}}} = \frac{1}{f_{\text{Refractive}}} + \frac{1 \cdot m}{f_{\text{Diffractive}}} \quad m = \pm1, \pm2, \pm3\ldots$$

Where:

$\frac{1}{f_{m\text{Diffractive}}}$: FL for “$m$” diffractive order ; $\frac{1}{f_{\text{Refractive}}}$: FL of a refractive lens ; m: order of multi-focal spot

The Multi-focal spots location can also be calculated by using HOLO/OR’s online optical calculator: https://www.holoor.co.il/optical-calculator/multifocal-lenses/

In the case of a multi-focal DOE with an even number of foci spots, the removal of the Zero-Order spot is achieved by special design and processing.

For binary designs (2 levels pattern structure), power efficiency varies between 75% (for Bi-focal and multi-focal) to 85% (Tri focal).

Each focal spot contains a fraction of the input beam power. In example, for a tri-focal DOE (~85% efficiency), first focal spot will have ~28% of the input beam power at precise diffractive FL, “+1” order. Forward on the propagation axis a focus will appear at the nominal FL of the lens. Here the focus spot will have ~28% of the input beam power. The last focus appears at the “-1” order (diffractive order) and will have the same power. At each order the rest of the power (~56%) will be spread around the focus in the form of a halo.

Multi-focal can also be used as quasi-elongated focus elements, effectively creating a larger depth of focus in material processing operations.

SPECIFICATIONS RANGE

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Fused Silica, ZnSe, Plastic</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>193nm to 10.6um</td>
</tr>
<tr>
<td>Number of Foci</td>
<td>Custom specific (2-11)</td>
</tr>
<tr>
<td>Doe design</td>
<td>Binary, 8-level, 16-level</td>
</tr>
<tr>
<td>Diffraction efficiency</td>
<td>75%-98%</td>
</tr>
<tr>
<td>Element size</td>
<td>5mm to 38.1mm</td>
</tr>
<tr>
<td>Coating (optional)</td>
<td>AR/AR</td>
</tr>
<tr>
<td>Custom design</td>
<td>Tailored power distribution, Foci spacing</td>
</tr>
</tbody>
</table>

Tel +972-8-940-9687 www.holoor.com
Fax +972-8-940-9606 holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617