THE NEXT GENERATION IN HIGH POWER ULTRA-SHORT PULSE LASER SURFACE PROCESSING

Develop high power ultra-short pulse lasers and the associated optics to enable the precise periodic texturing of surfaces to impart a range of surface functionalities at unprecedented processing speeds.

OBJECTIVES

- Manufacture textured functional surfaces utilising fewer raw materials
- Improve accuracy, power, and control over existing technologies
- Achieve fast materials processing with processing speeds 2-5 m²/min.
- Increase achievable precision
- Minimize heat impact on sensitive materials
- Increase productivity
- Increase achievable flexibility and product customization
- Significantly reduce processing costs

BENEFITS OF THE PROJECT

- More than 1000 jobs will be created
- An increase of the investment in innovation
- Reduction of harmful chemical usage
- High-throughput efficient material removal at up to 5 m²/min.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº825503
EXPECTED RESULTS OF END USER CASE STUDIES

FMCG PACKAGING
- Improved product filling valued at €25m p.a. saving of product overfilling
- Improved customer satisfaction
- Improved sustainability as customers use more product from their purchases

DISHWASHER
- 26.7 GWh of electrical power saving per year
- Offset of 11000 tonnes CO2 per year

TUMBLEDRYER
- 6.16 GWh of electrical power saving per year
- The offset of 2538 tonnes of CO2 per year

AUTOMOTIVE CYLINDER PISTON LINER
- 1.1% fuel economy due to reduced friction
- Potential to deliver savings of 49,611 tonnes of CO2 per year

AUTOMOTIVE HIGH STRENGTH ALUMINIUM PRESSING
- 257 million litres of fuel saving per year
- The offset of 664 million tonnes of CO2 per year

AESTHETIC CHROME COMPONENTS FOR AUTOMOTION
- Obtain super-hydrophobic textured surfaces
- Improve the easy-clean capability

Partners:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº825503

www.prometheus-laser.eu