Design and integration of 1D and 2D diffractive beam splitters (multi-spot) into optical systems in sequential

optical systems in sequential and non-sequential mode of ZEMAX[™]

TUTORIAL HOLO/OR

Contents

1.	Introduction	2
	1.1. Preliminary reading1.2. Definition of Diffraction Grating Surface in ZEMAX[™]	
	1.2. Definition of Diffraction Grating Surface in ZEMAX 1.3. Calculation of Lines/μm	
2.	Three techniques to model diffractive beam splitters – two in sequential mode	Š
	and one in non-sequential mode	3
	 2.1. Sequential mode - Method A: Diffraction grating surface and multi-configuration 2.2. Sequential mode - Method B: Field's angle 2.3. Sequential mode – displaying and analyzing results 	4
	 2.4. Non-sequential mode – Method C: Diffraction Grating surface with special definitions 2.5. Non-sequential mode - displaying and analyzing results 	
3.	Methods comparison and summary	Э
	3.1. Comparison table for sequential and non-sequential models3.2. Summary	
4.	Example files links and existing products from Holo/Or:	10
	4.1. Files4.2. Available products	

1. Introduction

- 1.1. Preliminary reading
 - 1.1.1. HOLO/OR's application note for Diffractive Beam Splitters
 - <u>http://holoor.co.il/Diffractive_optics_Applications/Application_Notes_BeamSplitters.htm</u>
 - 1.1.2. Articles about definition of diffractive functionality in ZEMAX
 - How diffractive surfaces are modeled in OpticStudio
 - How to model diffractive optics using the Binary 2 surface
 - 1.1.3. ZEMAX user manual Diffractive Grating surface
- 1.2. Definition of Diffraction Grating Surface in ZEMAX[™]
 - 1.2.1. Diffraction grating surfaces have two key parameters:
 - Lines/µm (equivalent to grating period)
 - Diffraction order

1.3. Calculation of Lines/µm

1.3.1. According to the Grating Equation:

$$\Lambda = \frac{m\lambda}{\sin\alpha}$$

Where:

- Λ: grating period
- m: order number (from Zero Order)
- α: separation angle (for example for m=1 means separation angle between Zero Order and Order +/- 1)
- λ: wavelength

Lines /
$$\mu m = \frac{1}{\Lambda[\mu m]}$$

- 1.3.2. Example:
 - λ = 532 nm

Page | 2

Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il

- α = 0.10 (More information about separation angle for even and odd orders can be found <u>here</u>)
- Calculated Λ = 304.814 μ m
- Lines/um = $1/\Lambda = 1/304.814 = 0.0033$ [Lines/ μ m]
- 1.3.3. Holo/Or's online grating calculator can be used:
 - <u>https://www.holoor.co.il/optical-calculator/gratings-optical-calculator/ (section "Gratings")</u>
- 2. Three techniques to model diffractive beam splitters two in sequential mode and one in non-sequential mode:
 - 2.1. Sequential mode Method A: Diffraction grating surface and multi-configuration
 - 2.1.1. Development steps
 - Inserting general parameters for simulation (wavelength, aperture, etc.)
 - Inserting Diffraction Grating surface into Lens editor
 - Lines/ μ m (equivalent to grating period)
 - Diffraction order
 - Definition of Multi-Configuration Editor
 - 2.1.2. Example for 1D case of 5 spots splitter diffraction orders 2 to 2:

B	Multi-Configurat	ion Editor				▼ - □	Operand 1 Pr	operties 🔇 🕥	Configuration
.	odate: All Windov		Xold) w 🗷 🔍		→ 0	Operand 1	Operand:	PRAM 🔻
\odot	Operand 1 Prop	erties ())	Configura	tion 3/5 🔇	•		Surface:	1 •
4	Active : 3/5	Config 1	Config 2	Config 3*	Config 4	Config 5		Parameter:	2
1	PRAM - 1/2	-2.000	-1.000	0.000	1.000	2.000		Row Color:	Default Color 🔹

Lens data editor view:

E Lens Data		le le			da I		0						
	date: All Windows • + • 10 11 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2												
4	Surf:Type	Cor	Radius	Thickness	Mat	Coa	Semi-Diameter	Conic	TCE x 1E-6	Lines/µm	Diffract Orde		
0 OBJECT	Standard 🔻		Infinity	Infinity			0.000	0.000	0.000				
1 STOP	Diffraction Grating •		Infinity	0.000			2.500	0.000	0.000	3.300E-003	0.000		
2	Paraxial 🔻			100.000			2.500		0.000	100.000	1		
3 IMAGE	Standard 🕶		Infinity	2			4.441E-016	0.000	0.000				

- 2.1.3. Advantages of the method
 - Realistic physical model (consistent with Diffraction Grating equation)
 - Allows optimization of the optical system including diffractive beam splitter

Page | 3

Copyright © 2021 Holo/Or LTD.

This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

• Allows 2D beam splitter modeling

2.2. Sequential mode - Method B: Field's angle

- 2.2.1. Development steps
 - Entering Fields' angle in "System Explorer" (The field angles are equivalent to propagation angle of the Multi-Spot orders)
- 2.2.2. Example for defining a 5-spot beam splitter with separation angle of 0.1 degrees:

System Explorer 🕜	- p	Field Data							• - 🗆 ×
Update: Editors Only 🔹	(X Y	Weig	ht V	DX VDY	VCX	VCY	VAN
Aperture			0.0	0.0	1.0	0.0 0	.0 0	0.0 0.0	0.0
Fields		P 2	0.0 -	0.1	1.0	0.0 0	.0 0	0.0 0.0	0.0
✓ Settings		₽ 3	0.0 -	0.2	1.0	0.0 0	.0 (0.0 0.0	0.0
Туре:		✓ 4	0.0	0.1	1.0	0.0 0	.0 0	0.0 0.0	0.0
		F 5	0.0	0.2	1.0	0.0 0	.0 (0.0 0.0	0.0
Angle	<u> </u>	6	0.0	0.0	1.0	0.0 0	.0 (0.0 0.0	0.0
Normalization:		7	0.0	0.0	1.0	0.0 0	.0 (0.0 0.0	0.0
Radial	-	8			1.0	0.0 0	.0 0	0.0 0.0	0.0
Radia		9			1.0	0.0 0		0.0 0.0	0.0
Set Vignetting		1 0			1.0			0.0 0.0	0.0
Clear Vignetting		1 1			1.0	0.0 0		0.0 0.0	0.0
 Field 1 (X = 0.0, Y = 0.0, Weight = 1 		12	0.0).0	1.0	0.0 0.0	.0 (0.0 0.0	0.0
 Field 2 (X = 0.0, Y = -0.1, Weight = Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 	1.0)	Number Of Fi	elds: 3		• •	Maximum Field:	0.0	Equa	I-Area Fields
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Adata editor view: 	1.0) 1.0) 0) _	Number Of Fi		ing Clea		1	0.0	Equa	al-Area Fields
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Lens data editor view: Lens Data Update: All Windows + + • • 	1.0) 1.0) .0)	Close	elds: 3		r Vignetting	g Save	Load		
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Lens data editor view: 	1.0) 1.0) .0)	Close	elds: 3		r Vignetting	g Save	Load		
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Add Field Lens Data Update: All Windows + + • • 1 	1.0) 1.0) .0)	Close	elds: 3 Set Vignet	¢ 🗌	r Vignetting	g Save		Sort	0
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Lens data editor view: Lens Data Update: All Windows + + • • • Surface 0 Properties • • 	1.0) 1.0) .0) .0) .0) .0) .0) .0) .0)	Close	elds: 3 Set Vignet	¢ 🗌	r Vignetting	Save		Sort	0
 Field 3 (X = 0.0, Y = -0.2, Weight = Field 4 (X = 0.0, Y = 0.1, Weight = 1 Field 5 (X = 0.0, Y = 0.2, Weight = 1 Add Field Lens Data Update: All Windows + + • • • Surface 0 Properties • • Surf:Type 	1.0) 1.0) .0) .0) .0) .0) .0) .0) .0)	Close	elds: 3 Set Vigneti	¢ 🗌	r Vignetting	g Save ⇒ € guration 1/1 Semi-Diam	Load	Sort	

• Object surface contains two functionalities – a source and a multi-spot. Distance from multispot and the following optical surfaces can be defined by adding distance between surface 0 and surface 1.

2.2.3. Advantages of the method

- Simplest way to build and analyze results
- Allows optimization of the optical system including diffractive beam splitter
- Allows 2D beam splitter modeling

Page | 4

Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

2.3. Sequential mode – displaying and analyzing results

2.3.1. 3D Layout diagram:

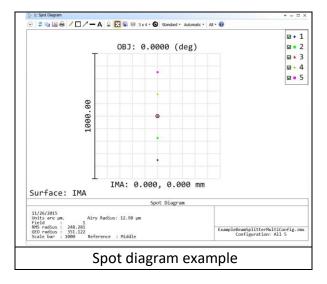
1: 3D Layout				2: 3D Layout					
📀 🗳 🗈 🔜 🖷 Line Thickness 🕶 🌘	ы <mark>∕</mark> □ ∕ — А н 0	≫ <mark> </mark> ⊠ 📀 (९ 🔟 🔒 💽 🖆 🌀	🔿 🕏 🗈 🔜 🖷 Line Thickness 🕶 🌘]/-АН	¢ <mark>₪ \</mark> •	Q 🔟 🔒 🖪	9 🗟 [
First Surface: Last Surface: Number Of Rays: Scale Bar: Rotation	1 • • • • • • • • • • • • • • • • • • •	Wavelength: Field: Ray Pattern: Color Rays By:	1 • All • XY Fan • Config # •	First Surface: Last Surface: Number Of Rays: Scale Bar:	1 2 On	▼ 7 \$	Wavelength: Field: Ray Pattern: Color Rays By:	1 All XY Fan Field #	• • •
X: -8.74681E-06 Delete Vignetted:		Z: Suppress Frame:		Rotation X: 7.23811E-08		Y: 0	Z:	0	
Hide Lens Faces: Hide Lens Edges: Hide X Bars:		Fletch Rays: Split NSC Rays: Scatter NSC Rays:		Delete Vignetted: Hide Lens Faces:			Suppress Frame: Fletch Rays:		
Configuration	All Current 1/5 2/5 3/5		4 	Hide Lens Edges: Hide X Bars:			Split NSC Rays: Scatter NSC Rays:		
Settings	for multi-conf	iguration -	Method A	Set	tings	for Field A	Angles - Me	thod B	

1: 3D Layout		▼ - □ ×
⊘ 🗢 🖬 🗑 🖊 🗖 ,	🔨 — A H 🚓 • 🙏 🖾 🥺 🤉 🖾 🔒 🔛 🖆 🕲 Line Thickness • 🔞	
_		
		1
		-
		J
¥.		
∠ Z		
<u>.</u>	1 mm	
	Rays near focal position	

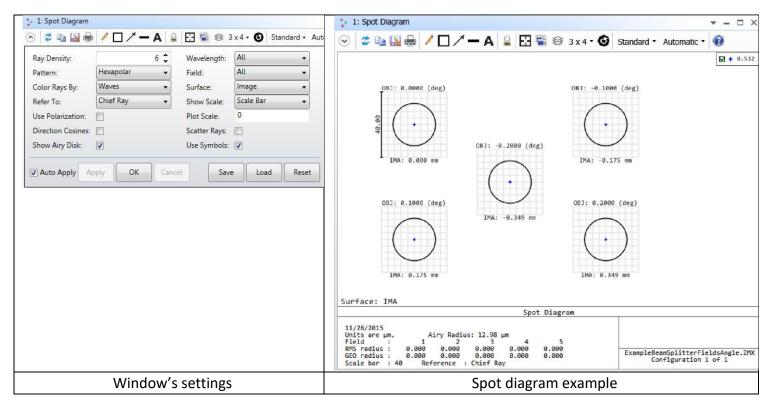
- 2.3.2. Spot diagram
 - Method A Window's setting definition in 3 steps:

Spot diagram in tools bar	Choosing "All" configurations in opened window	Settings	of the w	vind	ow's e	xample	9
Optimize Tolerance Libra		 1: Spot Diagram 2 Ian Ian Ian 8 Ray Density: 	/ [] / -		🔛 🕤 🎲 3 Wavelength:		idard + Auto
Rays & Aberrations Wavefr	 All Current 1/5 	Pattern: Color Rays By: Refer To:	Hexapolar Config Middle	•	Field: Surface: Show Scale:	All Image Scale Bar	•
Image: Single Ray Trace Image: Ray Aberration	2/5 3/5 4/5	Use Polarization: Direction Cosines: Show Airy Disk:			Plot Scale: Scatter Rays: Use Symbols:	100	
🛟 Standard Spot Diagram	© 5/5	Auto Apply	ok OK	Cancel	Save	Load	Reset

Page | 5


Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il


Einstein 13B, Science Park Ness Tziona 7403617

THE EXPERTS IN DIFFRACTIVE AND MICRO-OPTICS

Method B - Window's setting definition

2.4. Non-sequential mode – Method C: Diffraction Grating surface with special definitions

2.4.1. Development steps

Page | 6

- The design starts with the calculation of lines / μ m value.
- Open a new file in NSC mode
- Insert Source surface Define general properties of the design (wavelength ...)
- Number of "#Analysis Rays" and "# Layout Rays"

Copyright © 2021 Holo/Or LTD.

This document is the sole and exclusive property of HOLO/OR LTD. Fail Not to be distributed or divulged without prior written agreement

 Tel +972-8-940-9687
 www.holoor.com

 Fax +972-8-940-9606
 holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617

THE EXPERTS IN DIFFRACTIVE AND MICRO-OPTICS

Object 2 Properties 🔇 🕨											Configuration 1	/1 (3)			
Object Type	Ref Object	X Position	Y Position	Z Position	Tilt About Z	Material	Radius 1	Conic 1	Clear 1	Edge 1	Thickness	Clear 2	Edge 2	Lines/µm	Diff Orde
Source Gaussian 🕶	0	0.000	0.000	0.000	0.000		500	10000	1.000	0	0				
Diffraction Grating •	0	0.000	0.000	10.000	0.000		0.000	0.000	3.000	3.000	1.000	3.000	3.000	1.000E-002	0.0
Diffraction Grating •	2	0.000	0.000	3.000	90.000		0.000	0.000	1.000	3.000	1.000	3.000	3.000	1.000E-002	0.00
Paraxial Lens •	3	0.000	0.000	4.000	0.000		3.000	3.000	100.000	100.000					
Detector Rectangle *	4	0.000	0.000	100.000	0.000		5.000	5.000	100	100	0	0	0.000	0	

- Insert Diffraction Grating surface
 - Define basic parameters for the element (material, thickness, clear aperture)
 - Insert Lines / μ m parameter
 - o Open properties of Diffraction grating surface and go to Diffraction property
 - In "Split" option choose "Split by DLL function" and then choose file diff_samp_1.DLL
 - Enter Start Order and Stop Order. For example, for 5 spots beam splitter -2 and 2
 - \circ Insert period size in lines/µm units into reflection and transmission sections.

👔 Non-Sequentia	l Component Edito	or								
Update: All Windo	ows • 🕜 🔇 🔽	0 0 0 II 0	CAD - Z -	◎ Ϛ 🛛 \$ ↔•						
 Object 2 Proper 	ties 🔇 🔊									
Type Draw	Split:	Split by DLL function								
Sources	DLL:	diff_samp_1.DLL		*						
Coat/Scatter Scatter To	Start Order:	-2	Stop Order:	2						
Volume Physics Index		Reflect:	_	Transmit:						
Diffraction	lines/µm	0	lines/µm	0.01						

* For a 2D beam splitter another Diffraction Grating surface needs to be entered with a 90 degrees rotation around the optical axis (typically "tilt Z").

** For large number of orders, some modification in general properties of the non-sequential mode might be required to get correct results. Increase Maximum Segments per Ray value while you will get efficient number for the specific case.

System Explorer 🕜	д
Update: All Windows 🗸	
 Wavelengths 	
Environment	
Polarization	
Advanced	
Material Catalogs	
 Non-Sequential 	
Maximum Intersections Per Ray:	
100	
Maximum Segments Per Ray:	
500	

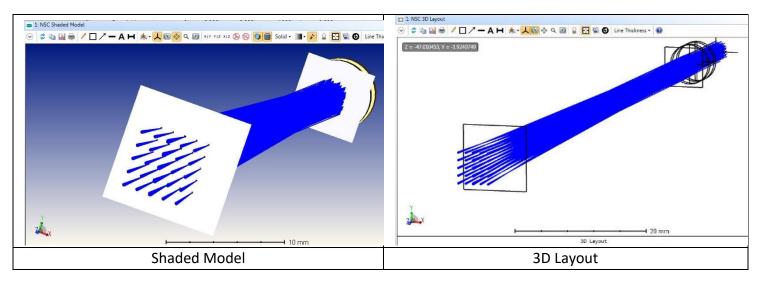
Page | 7

Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

2.4.2. Advantages of the method

- More realistic physical model (chromatic behavior)
- Allows the modeling of all orders at once for a 2D beam splitter
- Enables integration of a diffractive element into any optical system
- Very useful for illumination systems

2.5. Non-sequential mode - displaying and analyzing results

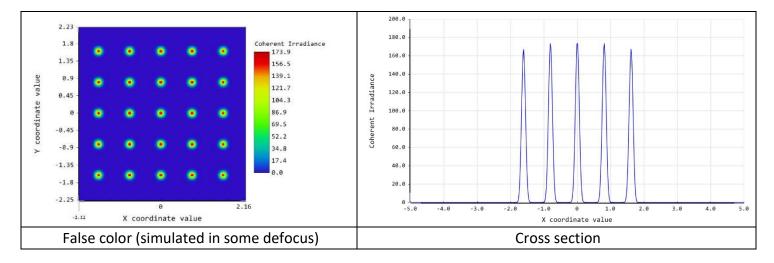

2.5.1. NSC 3D Layout and NSC Shaded Model:

• To see the diffraction orders, mark the option for "Split NSC Rays" in properties of 3D Layout and also for Ray Trace Control

Surface: Ray Database:	No Ray Databases Found>	Clear Detectors Clear & Trace	All Trace
Filter:		Auto Update	# of Cores: 8 🔻
Ray Trace:	Use Rays	Use Polarization	Ignore Errors
Color Rays By: Rotation	Source # Scale Bar: On	Split NSC Rays	Scatter NSC Rays
X: 0	Y: 0 Z: 0		
Use Polarization	Split NSC Rays		
Fletch Rays	Scatter NSC Rays		
Suppress Frame			
Auto Apply	oply OK Cancel Save Load Reset		

• Example - results for beam splitter array 5x5

Page | 8 Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement


Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617

2.5.2. Ray Tracing Results

3. Methods comparison and summary

	Method A	Method B	Method C
Ideal model	Yes	Yes	Yes
Geometrical method	Yes	Yes	Yes
Optimization of multi element optical system	Natural	Requires adaptation per wavelength	Complex
Aberration analysis	Natural	Natural	Complex
Simultaneous analysis of all spots	No	No	Yes

3.1. Comparison table for sequential and non-sequential models

3.2. Summary

- 3.2.1. Three methods to model Diffractive Beam Splitter in ZEMAX were shown
- 3.2.2. The methods are based on geometrical concept and assume an ideal element
- 3.2.3. The Sequential mode based methods benefit optimization and design capability by using multi configuration or field angles
- 3.2.4. The Non-Sequential mode method brings more realistic result by allowing to propagate all spots at once
- 3.2.5. The methods allow integration and analysis of Diffractive Beam Splitter within different optical systems design

Copyright © 2021 Holo/Or LTD. This document is the sole and exclusive property of HOLO/OR LTD. Not to be distributed or divulged without prior written agreement

4. Example files links and existing products from Holo/Or:

- 4.1. Files
 - <u>ExampleBeamSplitterMultiConfig</u>
 - <u>ExampleBeamSplitterFieldsAngle</u>
 - <u>MS-NS</u>
- 4.2. Available products

http://holoor.co.il/Diffractive Optics Products/Diffractive Beam Splitters/BeamSplittermultispot.htm